ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masahiro Tatsumi, Tomoko Ito, Toshikazu Takeda, Masatoshi Yamasaki, Akio Yamamoto, Masaharu Takayasu
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE97-A24264
Articles are hosted by Taylor and Francis Online.
To provide accurate effective cross sections for core calculations, the multiband method was applied to light water reactor assembly calculations. The multiband method has been extended to arbitrary geometries by introducing band-dependent currents at the boundaries of a region. The transport of neutron is treated by the angular space-dependent current coupling collision probability method. A fuel assembly is divided into heterogeneous domains where the multiband method is applied directly by using collision probabilities. Several examples of numerical calculations for UO2 and mixed oxide fuel assemblies are shown. The space dependence of the effective cross section can be expressed accurately by this method, which leads to an accurate prediction of k∞ values.