ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
J. A. Favorite, W. M. Stacey, Jr.
Nuclear Science and Engineering | Volume 125 | Number 1 | January 1997 | Pages 101-106
Technical Note | doi.org/10.13182/NSE97-A24258
Articles are hosted by Taylor and Francis Online.
A new variational functional for space-time neutronics is presented. This functional is stationary about the integro-differential form of the diffusion equation, in which the delayed neutron source is expressed as a convolution integral of the flux, and an integro-differential adjoint flux equation. The new functional is used to derive a quasi-static method that is similar to the improved quasistatic (IQS) method, except that the equation for the flux shape uses a different expression for the delayed neutron source. In a one-dimensional sub-prompt critical test problem, the new variational quasi-static method was slightly more accurate than the IQS method.