ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
J. E. Morel, K. D. Lathrop
Nuclear Science and Engineering | Volume 147 | Number 2 | June 2004 | Pages 158-166
Technical Paper | doi.org/10.13182/NSE04-A2425
Articles are hosted by Taylor and Francis Online.
The integral transport equation clearly indicates that the angular flux in a void is constant along each characteristic. Yet, simple arguments can be used to demonstrate that there exist angular flux solutions in voids that have a delta-function angular dependence and a nonconstant spatial dependence. Such solutions can appear to be nonconstant along a characteristic. Using a simple example problem, we demonstrate that such solutions represent the limit of a continuous sequence of nonsingular solutions, each of which is constant along every characteristic. We also show that care must be taken in applying the integral transport equation to singular problems of this type because erroneous solutions are easily obtained. Two reliable approaches for obtaining proper solutions are presented. We also show that the differential form of the transport equation in one-dimensional spherical geometry requires less care than the integral form of the transport equation for problems of this type. Finally, we discuss the applicability of the Sn method to problems in curvilinear geometries with singular solutions of this type.