ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
Deokjung Lee, Thomas J. Downar, Yonghee Kim
Nuclear Science and Engineering | Volume 147 | Number 2 | June 2004 | Pages 127-147
Technical Paper | doi.org/10.13182/NSE03-64
Articles are hosted by Taylor and Francis Online.
The convergence rates of the nonlinear coarse-mesh finite difference (CMFD) method and the coarse-mesh rebalance (CMR) method are derived analytically for one-dimensional, one-group solutions of the fixed-source diffusion problem in a nonmultiplying infinite homogeneous medium. The derivation was performed by linearizing the nonlinear algorithm and by applying Fourier error analysis to the linearized algorithm. The mesh size measured in units of the diffusion length is shown to be a dominant parameter for the convergence rate and for the stability of the iterative algorithms. For a small mesh size problem, the nonlinear CMFD is shown to be a more effective acceleration method than CMR. Both CMR and two-node CMFD algorithms are shown to be unconditionally stable. However, the one-node CMFD becomes unstable for large mesh sizes. To remedy this instability, an underrelaxation of the current correction factor for the one-node CMFD method is successfully introduced, and the domain of stability is significantly expanded. Furthermore, the optimum underrelaxation parameter is analytically derived, and the one-node CMFD with the optimum relaxation is shown to be unconditionally stable.