ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. P. Hennart, E. M. Malambu, E. H. Mund
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 97-110
Technical Paper | doi.org/10.13182/NSE96-A24227
Articles are hosted by Taylor and Francis Online.
Several polynomial finite elements of nodal type are introduced that should lead to convergence of O(h1) in the L2 norm. Two of these methods are new and are expected to achieve the same orders of convergence with fewer parameters than the third method. They are applied to the one-group diffusion equation under different formulations, namely, several versions (with or without reduced and transverse integrations) of the primal and the mixed-hybrid formulations. Convergence rates are checked for a model problem with an analytical solution. Two of these methods exhibit superconvergence phenomena [O(h4) instead of O(h3)], a fact that can be explained heuristically. The most promising method, with only five parameters per cell, turns out to yield only O(h2) in its most algebraically efficient versions, while it has the potential of O(h3) convergence rates. Again, an explanation is given for this behavior and a fully O(h3) version is developed. Finally, these methods are applied to more realistic multigroup situations. In all cases, they are compared with results obtained from polynomial nodal methods in response matrix formalism. In the multigroup case, a well-known reference solution is also used.