ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. P. Hennart, E. M. Malambu, E. H. Mund
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 97-110
Technical Paper | doi.org/10.13182/NSE96-A24227
Articles are hosted by Taylor and Francis Online.
Several polynomial finite elements of nodal type are introduced that should lead to convergence of O(h1) in the L2 norm. Two of these methods are new and are expected to achieve the same orders of convergence with fewer parameters than the third method. They are applied to the one-group diffusion equation under different formulations, namely, several versions (with or without reduced and transverse integrations) of the primal and the mixed-hybrid formulations. Convergence rates are checked for a model problem with an analytical solution. Two of these methods exhibit superconvergence phenomena [O(h4) instead of O(h3)], a fact that can be explained heuristically. The most promising method, with only five parameters per cell, turns out to yield only O(h2) in its most algebraically efficient versions, while it has the potential of O(h3) convergence rates. Again, an explanation is given for this behavior and a fully O(h3) version is developed. Finally, these methods are applied to more realistic multigroup situations. In all cases, they are compared with results obtained from polynomial nodal methods in response matrix formalism. In the multigroup case, a well-known reference solution is also used.