ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
J. P. Hennart, E. M. Malambu, E. H. Mund
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 97-110
Technical Paper | doi.org/10.13182/NSE96-A24227
Articles are hosted by Taylor and Francis Online.
Several polynomial finite elements of nodal type are introduced that should lead to convergence of O(h1) in the L2 norm. Two of these methods are new and are expected to achieve the same orders of convergence with fewer parameters than the third method. They are applied to the one-group diffusion equation under different formulations, namely, several versions (with or without reduced and transverse integrations) of the primal and the mixed-hybrid formulations. Convergence rates are checked for a model problem with an analytical solution. Two of these methods exhibit superconvergence phenomena [O(h4) instead of O(h3)], a fact that can be explained heuristically. The most promising method, with only five parameters per cell, turns out to yield only O(h2) in its most algebraically efficient versions, while it has the potential of O(h3) convergence rates. Again, an explanation is given for this behavior and a fully O(h3) version is developed. Finally, these methods are applied to more realistic multigroup situations. In all cases, they are compared with results obtained from polynomial nodal methods in response matrix formalism. In the multigroup case, a well-known reference solution is also used.