ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. A. Germogenova
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 63-71
Technical Paper | doi.org/10.13182/NSE96-A24223
Articles are hosted by Taylor and Francis Online.
The analytical representation of eigenfunctions for finite moments method approximations of radiative transport equations is constructed in slab geometry problems. The truncated balance algorithm is used. An angle dependence of discrete eigenfunctions is determined by discrete characteristic equation solutions. It is established that space-dependent factors of discrete eigenfunctions are Pade approximations of the exponential functions and correspond to the original transport problem eigenfunctions. This technique proves to be useful for analyzing solvability and accuracy of finite moment approximations and also for developing computational algorithms. Slowly changing eigenfunctions are included in the regular component of the optically thick slab problem solution. Coarse-mesh algorithms or diffusion approximations at specific boundary conditions can be used to determine these components. Other eigenfunctions determine the singular component of the mesh solution. This component represents the transition regime on coarse meshes with typical oscillations or with a slow decrease in boundary layers. It is strongly different from the singular component of the exact solution.