ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
T. A. Germogenova
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 63-71
Technical Paper | doi.org/10.13182/NSE96-A24223
Articles are hosted by Taylor and Francis Online.
The analytical representation of eigenfunctions for finite moments method approximations of radiative transport equations is constructed in slab geometry problems. The truncated balance algorithm is used. An angle dependence of discrete eigenfunctions is determined by discrete characteristic equation solutions. It is established that space-dependent factors of discrete eigenfunctions are Pade approximations of the exponential functions and correspond to the original transport problem eigenfunctions. This technique proves to be useful for analyzing solvability and accuracy of finite moment approximations and also for developing computational algorithms. Slowly changing eigenfunctions are included in the regular component of the optically thick slab problem solution. Coarse-mesh algorithms or diffusion approximations at specific boundary conditions can be used to determine these components. Other eigenfunctions determine the singular component of the mesh solution. This component represents the transition regime on coarse meshes with typical oscillations or with a slow decrease in boundary layers. It is strongly different from the singular component of the exact solution.