ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Taewan Noh, Warren F. Miller, Jr.
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 18-30
Technical Paper | doi.org/10.13182/NSE96-A24221
Articles are hosted by Taylor and Francis Online.
Using the operator form of a synthetic acceleration, the P1 acceleration [diffusion synthetic acceleration (DSA)] and P2 acceleration schemes for one-dimensional slab and the P1 and simplified P2 acceleration schemes for two-dimensional x-y geometry are derived. The convergence rate of each scheme for a simple model problem is compared, and the result is generalized by performing a Fourier analysis. In the one-dimensional case, the new second-moment P2 acceleration outperforms an earlier third-moment P2 acceleration developed by Miller and Larsen. However, it is still less efficient than P1 acceleration. Similar results show that the P1 acceleration converges faster than the simplified P2 acceleration in two-dimensional x-y geometry. These results confirm that one cannot simply assume that replacement of the DSA method with a higher order operator will lead to a smaller spectral radius.