ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
Ugur Mertyurek, Paul J. Turinsky
Nuclear Science and Engineering | Volume 147 | Number 2 | June 2004 | Pages 93-126
Technical Paper | doi.org/10.13182/NSE04-A2422
Articles are hosted by Taylor and Francis Online.
A Super-Nodal method is developed to improve computational efficiency of core simulations for three-dimensional (3-D) core neutronics models. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. The Super-Nodal method reduces the errors associated with the use of coarse nodes in the analyses by providing a new set of cross sections and discontinuity factors for the new nodalization. These so-called homogenization parameters are obtained by employing a consistent collapsing technique.During this research a new type of singularity, namely, "fundamental mode singularity," is addressed in the analytical nodal method solution. The "coordinate shifting" approach is developed as a method to address this singularity. Also, the "buckling shifting" approach is developed as an alternative to address the "zero buckling singularity." In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the collapsed diffusion coefficient. A simple error analysis based on the relative residual in the 3-D few-group diffusion equation at the fine mesh level is also introduced in this work.