ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
David C. Losey, John C. Lee, William R. Martin, Thomas C. Adamson, Jr.
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 68-85
Technical Paper | doi.org/10.13182/NSE96-A24213
Articles are hosted by Taylor and Francis Online.
A singular perturbation technique is applied to the time-independent one-dimensional neutron transport equation with isotropic neutron scattering. The technique reduces the transport problem to a series of diffusion theory problems in the interior medium and a series of simplified transport problems solved analytically in the boundary layer. The analysis provides a consistent method for deriving and comparing various diffusion theory approximations to the transport equation. In addition, the resulting scheme provides a systematic method for enhancing the accuracy of diffusion theory calculations of global flux distributions. A general asymptotic expansion of c, the number of secondary neutrons per collision, is obtained and an O(ε2) correction to the diffusion theory boundary condition at a material interface is derived. The perturbation technique has been applied analytically to both fixed source and criticality problems. The technique is also incorporated in a multigroup diffusion theory computer code. In test calculations, the error in flux distributions is reduced to about one-half that achieved with standard diffusion theory techniques.