ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Taek Kyum Kim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 381-391
Technical Paper | doi.org/10.13182/NSE96-A24201
Articles are hosted by Taylor and Francis Online.
A method for determining the mathematical adjoint solution of a higher order nodal expansion method (NEM) based on the simultaneous solution of multigroup equations for each node in the rectangular geometry is presented. In the higher order NEM, the forward NEM equations in a given node include not only the nodal balance and interface-current equations but also weighted residual method (WRM) equations for higher order expansion coefficients. In deriving the mathematical adjoint equations corresponding to these forward NEM equations, the transverse leakage terms in the WRM equations need to be replaced by partial currents. Because transverse leakage terms of a node are linked to partial currents of many neighboring nodes, replacement of transverse leakage terms by partial currents results in complicated WRM equations. Because mathematical adjoint equations are obtained by transposing the nodal forward equations, direct use of these complicated WRM equations makes the numerical computation of the adjoint solution inefficient. This problem is avoided by treating the transverse leakage terms contained in the WRM equations as additional unknowns and by including the equations defining the transverse leakage terms in terms of partial currents into the nodal forward equations. The mathematical adjoint equations are then derived by transposing the resulting nodal forward equations. This adjoint solution method is verified by comparing nodal adjoint fluxes with the fine-mesh VENTURE solution for the International Atomic Energy Agency (IAEA) pressurized water reactor (PWR) benchmark problem and by comparing the local reactivity changes computed with first-order perturbation theory for the IAEA PWR and the Yonggwang unit 2 PWR with the exact reactivity values determined from the eigenvalue difference between perturbed and unperturbed cores.