ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Kirsten F. Laurin-Kovitz,E. E. Lewis
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 369-380
Technical Paper | doi.org/10.13182/NSE96-A24200
Articles are hosted by Taylor and Francis Online.
A perturbation method based on the variational nodal method for solving the neutron transport equation is developed for multidimensional geometries. The method utilizes the solution of the corresponding adjoint transport equation to calculate changes in the critical eigenvalue due to crosssection changes. Both first-order and exact perturbation theory expressions are derived. The adjoint solution algorithm has been formulated and incorporated into the variational nodal option of the Argonne National Laboratory DIF3D production code. To demonstrate the efficacy of the methods, perturbation calculations are performed on the three-dimensional Takeda benchmark problems in both Cartesian and hexagonal geometries. The resulting changes in eigenvalue are also obtained by direct calculation with the variational nodal method and compared with the change approximated by the first-order and exact theory expressions from the perturbation method. Exact perturbation results are in excellent agreement with the actual eigenvalue differences calculated in VARIANT. First-order theory holds well for sufficiently small perturbations. The times required for the perturbation calculations are small compared with those expended for the base-forward and adjoint calculations.