ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Roy
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 358-368
Technical Paper | doi.org/10.13182/NSE96-A24199
Articles are hosted by Taylor and Francis Online.
The integral transport equation is solved in square unit cells by assuming the existence of a fundamental mode. The equations governing the Bn method are given without making the small buckling approximation. First, the angular flux is factorized into two parts: a periodic microscopic fine-structure flux and a macroscopic form with no angular dependence. The macroscopic form only depends on a buckling vector with a given orientation. The critical buckling norm, along with the corresponding fine-structure flux, is obtained using collision probability calculations that are repeated until criticality is achieved. The procedure allows the periodic or reflective boundary conditions of the unit cell to be taken into account using closed-form contributions obtained from the cyclic tracking technique. Numerical results are presented for one-group heterogeneous cell problems with isotropic and linearly anisotropic scattering kernels, some of which include void regions.