ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
R. Roy
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 358-368
Technical Paper | doi.org/10.13182/NSE96-A24199
Articles are hosted by Taylor and Francis Online.
The integral transport equation is solved in square unit cells by assuming the existence of a fundamental mode. The equations governing the Bn method are given without making the small buckling approximation. First, the angular flux is factorized into two parts: a periodic microscopic fine-structure flux and a macroscopic form with no angular dependence. The macroscopic form only depends on a buckling vector with a given orientation. The critical buckling norm, along with the corresponding fine-structure flux, is obtained using collision probability calculations that are repeated until criticality is achieved. The procedure allows the periodic or reflective boundary conditions of the unit cell to be taken into account using closed-form contributions obtained from the cyclic tracking technique. Numerical results are presented for one-group heterogeneous cell problems with isotropic and linearly anisotropic scattering kernels, some of which include void regions.