ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. Roy
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 358-368
Technical Paper | doi.org/10.13182/NSE96-A24199
Articles are hosted by Taylor and Francis Online.
The integral transport equation is solved in square unit cells by assuming the existence of a fundamental mode. The equations governing the Bn method are given without making the small buckling approximation. First, the angular flux is factorized into two parts: a periodic microscopic fine-structure flux and a macroscopic form with no angular dependence. The macroscopic form only depends on a buckling vector with a given orientation. The critical buckling norm, along with the corresponding fine-structure flux, is obtained using collision probability calculations that are repeated until criticality is achieved. The procedure allows the periodic or reflective boundary conditions of the unit cell to be taken into account using closed-form contributions obtained from the cyclic tracking technique. Numerical results are presented for one-group heterogeneous cell problems with isotropic and linearly anisotropic scattering kernels, some of which include void regions.