ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Roy
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 358-368
Technical Paper | doi.org/10.13182/NSE96-A24199
Articles are hosted by Taylor and Francis Online.
The integral transport equation is solved in square unit cells by assuming the existence of a fundamental mode. The equations governing the Bn method are given without making the small buckling approximation. First, the angular flux is factorized into two parts: a periodic microscopic fine-structure flux and a macroscopic form with no angular dependence. The macroscopic form only depends on a buckling vector with a given orientation. The critical buckling norm, along with the corresponding fine-structure flux, is obtained using collision probability calculations that are repeated until criticality is achieved. The procedure allows the periodic or reflective boundary conditions of the unit cell to be taken into account using closed-form contributions obtained from the cyclic tracking technique. Numerical results are presented for one-group heterogeneous cell problems with isotropic and linearly anisotropic scattering kernels, some of which include void regions.