ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Tsung-Kuang Yeh, Digby D. Macdonald
Nuclear Science and Engineering | Volume 123 | Number 2 | June 1996 | Pages 305-316
Technical Paper | doi.org/10.13182/NSE96-A24192
Articles are hosted by Taylor and Francis Online.
The DAMAGE-PREDICTOR computer code, which has the capability of simultaneously estimating the concentrations of radiolysis species, the electrochemical corrosion potential (ECP), and the crack growth rate (CGR) of a reference crack in sensitized Type 304 stainless steel, is used to evaluate the responses of the Dresden-2 and Duane Arnold boiling water reactors (BWRs) to hydrogen water chemistry (HWC) at different power levels. The HWC simulations for these two BWRs are carried out for feedwater hydrogen concentration ([H2]fw) ranging from 0.0 to 2.0 parts per million and for power levels at 100, 90, 80, and 70%. Variations in the oxygen, hydrogen peroxide, and hydrogen concentrations; ECP; and CGR for four specific areas (the side of the core shroud head, the base of the core shroud, the recirculation system outlet, and the bottom of the lower plenum) as a function of the feedwater hydrogen concentration and power level are analyzed. It is found that lower power levels alleviate the amount of hydrogen injected into the feedwater that is required to protect the reactor components from intergranular stress corrosion cracking. HWC is particularly effective in protecting the base of the core shroud and the recirculation system outlet but is only moderately effective in protecting the bottom of the lower plenum. On the other hand, the ECP and the CGR at the side of the core shroud head seem to be indifferent to both the operating power level and the feedwater hydrogen concentration.