ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tsung-Kuang Yeh, Digby D. Macdonald
Nuclear Science and Engineering | Volume 123 | Number 2 | June 1996 | Pages 305-316
Technical Paper | doi.org/10.13182/NSE96-A24192
Articles are hosted by Taylor and Francis Online.
The DAMAGE-PREDICTOR computer code, which has the capability of simultaneously estimating the concentrations of radiolysis species, the electrochemical corrosion potential (ECP), and the crack growth rate (CGR) of a reference crack in sensitized Type 304 stainless steel, is used to evaluate the responses of the Dresden-2 and Duane Arnold boiling water reactors (BWRs) to hydrogen water chemistry (HWC) at different power levels. The HWC simulations for these two BWRs are carried out for feedwater hydrogen concentration ([H2]fw) ranging from 0.0 to 2.0 parts per million and for power levels at 100, 90, 80, and 70%. Variations in the oxygen, hydrogen peroxide, and hydrogen concentrations; ECP; and CGR for four specific areas (the side of the core shroud head, the base of the core shroud, the recirculation system outlet, and the bottom of the lower plenum) as a function of the feedwater hydrogen concentration and power level are analyzed. It is found that lower power levels alleviate the amount of hydrogen injected into the feedwater that is required to protect the reactor components from intergranular stress corrosion cracking. HWC is particularly effective in protecting the base of the core shroud and the recirculation system outlet but is only moderately effective in protecting the bottom of the lower plenum. On the other hand, the ECP and the CGR at the side of the core shroud head seem to be indifferent to both the operating power level and the feedwater hydrogen concentration.