ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Nicolas Crouzet, Paul J. Turinsky
Nuclear Science and Engineering | Volume 123 | Number 2 | June 1996 | Pages 206-214
Technical Paper | doi.org/10.13182/NSE96-A24183
Articles are hosted by Taylor and Francis Online.
In solving few-group neutron kinetic equations in multidimensions, one must select time step sizes as a function of time such that the temporal truncation error introduced by the discrete time derivative approximation is limited to ensure the desired fidelity. When using the Euler backward finite difference to approximate the first derivative of the flux—a popular approximation because it ensures numerical stability—the truncation error is know to be O(Δt2) and proportional to the second derivative. By employment of the double-time-step-size technique, modified to reduce the frequency that double-time-step-size solutions are required, an estimate of the second derivative can be obtained, leading to an efficient computational algorithm for determining the near-optimum time-step-size sequence to ensure the desired fidelity.