ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Peter Grimm, Menashe Aboudy, Alex Galperin, Meir Segev
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 395-406
Technical Paper | doi.org/10.13182/NSE96-A24174
Articles are hosted by Taylor and Francis Online.
Preliminary to implementing a pin power reconstruction scheme in the nodal core calculations of the ELCOS system, the “main stream” methods and elements thereof were tested against fine-mesh calculations of a number of benchmark “small cores” consisting of uranium, controlled uranium, and mixed-oxide assemblies. Overall, the results do not clearly favor one of the methods. However, test details conduce us to prefer the 32-term expansion for corner-point fluxes over their determination by the separability assumption, and the 21-term expansion of the intranodal flux over the 13-term expansion. There is little difference whether the factorization of the pin power distribution into global and form factors is imposed on the group fluxes or on the power. Data transfers and matrix inversions connected with the many-term flux expansions slow down the nodal calculation. This condition may be alleviated in some cases by an approximation leading to fewer matrix inversions.