ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. P. Gardner, C. L. Barrett, W. Haq, D. E. Peplow
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 326-343
Technical Paper | doi.org/10.13182/NSE96-A24168
Articles are hosted by Taylor and Francis Online.
A Monte Carlo code named Mcnaff has been developed and tested for flow rate measurement and general composition determination of a flowing fluid by neutron activation analysis. Specifically, oxygen determination in a flowing fluid is treated, including simulating the emission and transport of neutrons in the fluid, the activation of l6O to 16N, the subsequent flow and dispersion of the 16N in the flow channel, the downstream decay of 16N, and the subsequent detection of the emitted decay gamma rays. This code is very efficient, partly because (a) the continuous single history approach has been taken, which follows a single history from emission of a neutron, through the production and decay of the 16N and the emission of a characteristic gamma ray, and finally to the full energy detection of the gamma ray and (b) the principle of forcing can be and is used throughout so that almost every history results in a partial success. The present Mcnaff code is capable of calculating gamma-ray detection yields per neutron emitted to the same accuracy as an approach by Perez-Griffo, Block, and La hey, which numerically solves the partial differential equations for modeling particle dispersion and diffusion and calculates separately by Monte Carlo both the neutron absorption and gamma-ray detection process. The Mcnaff code is estimated to be about two orders of magnitude faster and should be more convenient to use because all calculations are accomplished in a single step.