ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
James S. Warsa, Todd A. Wareing, Jim E. Morel, John M. McGhee, Richard B. Lehoucq
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 26-42
Technical Paper | doi.org/10.13182/NSE04-1
Articles are hosted by Taylor and Francis Online.
The Implicitly Restarted Arnoldi Method (IRAM), a Krylov subspace iterative method, applied to k-eigenvalue calculations for criticality problems in deterministic transport codes is discussed. A computationally efficient alternative to the power iteration method that is typically used for such problems, the IRAM not only finds the largest eigenvalue but also several additional higher order eigenvectors with little extra computational cost. Implementation requires only modest changes to existing power iteration coding present in an SN transport program. Numerical results are presented for three-dimensional SN transport on unstructured tetrahedral meshes to compare the IRAM results with those computed using the traditional, unaccelerated power iteration method. The results indicate that the IRAM can be an efficient and powerful technique, especially for problems with dominance ratios approaching unity.