ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
E. E. Lewis, C. B. Carrico, G. Palmiotti
Nuclear Science and Engineering | Volume 122 | Number 2 | February 1996 | Pages 194-203
Technical Paper | doi.org/10.13182/NSE96-1
Articles are hosted by Taylor and Francis Online.
The variational nodal formulation of the neutron transport equation is generalized to provide spherical harmonics approximations of arbitrary odd order. The even angular parity trial functions within the nodes are complemented by new odd angular parity trial functions at the node interfaces. These are derived from the spherical harmonic continuity conditions presented in the classical work of Rumyantsev. The Yn±n terms are absent for all odd n in the resulting odd-parity trial function sets. This result is shown to be equivalent to requiring the variational nodal matrix that couples even- and odd-parity angular trial functions to be of full rank and yields vacuum and reflected boundary conditions as well as nodal interface conditions within the framework of the variational formulation. Nodal P1, P3, and P5 approximations are implemented in the Argonne National Laboratory code VARIANT, utilizing the existing spatial trial functions in x-y geometry. The accuracy of the approximations is demonstrated on model fixed source and few-group eigenvalue problems. The new interface trial functions have no effect on P1 approximations and yield P3 results that differ very little from those obtained with existing trial functions, even where the P5 approximation leads to further improvement. More significantly, the new trial functions allow P5 or higher order algorithms to be implemented in a consistent straightforward manner.