ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bojan G. Petrovic, Alireza Haghighat
Nuclear Science and Engineering | Volume 122 | Number 2 | February 1996 | Pages 167-193
Technical Paper | doi.org/10.13182/NSE96-3
Articles are hosted by Taylor and Francis Online.
An accurate prediction of the reactor pressure vessel (PV) fast neutron fluence (E> 1.0 MeV or E> 0.1 MeV) is necessary to ensure PV integrity over the design lifetime. The discrete ordinates method (SN method) is the method of choice to treat such problems, and the DORT SN code is widely used as a standard tool for PV fluence calculations. The SN numerics and the corresponding DORT numerical options and features offer alternative choices that increase flexibility but also impact results. The effects of SN numerics based on PV fluence calculations for two pressurized water reactors are examined. The differencing schemes [linear, zero-weighted (ZW), and θ-weighted (TW)] and their interactions with spatial and angular discretization are also examined. The linear and TW ( θ = 0.9) schemes introduce unphysical flux oscillations that for certain groups and positions may exceed 10%. The ZW scheme produces smooth results; however, its results differ from the other two schemes. A good compromise for PV fluence calculations is a TW scheme with a small θ value (i.e., θ = 0.3), which reduces the uncertainty to ∼3%. Angular discretization and spatial mesh size employed in typical calculations introduce another ∼3 and ∼2% uncertainty, respectively. The analysis further shows that the fixup is not necessary for the negative scattering source. The pointwise convergence criterion is also not a critical issue in the fast energy range because of a relatively fast convergence rate. Similarly, acceleration parameters impact mainly the execution time and only marginally the results. The root-mean-square combined uncertainty for standard PV fluence calculations due to the options analyzed is ∼5%.