ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Peng Wang, Tunc Aldemir
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 1-25
Technical Paper | doi.org/10.13182/NSE04-A2415
Articles are hosted by Taylor and Francis Online.
The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model, the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of finding the unmonitored parameter/state variables in a given cell at a given time recursively from a Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach and expands the applicability range of DSD, as well as providing a link to the conventional state/parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The results of the study show that the new theoretical basis (a) increases the applicability of methodology to arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncertainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and (c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD and conventional state/parameter estimation schemes is shown and illustrated for the least-squares estimator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly measuring local power density in nuclear reactor cores.