ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Peng Wang, Tunc Aldemir
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 1-25
Technical Paper | doi.org/10.13182/NSE04-A2415
Articles are hosted by Taylor and Francis Online.
The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model, the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of finding the unmonitored parameter/state variables in a given cell at a given time recursively from a Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach and expands the applicability range of DSD, as well as providing a link to the conventional state/parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The results of the study show that the new theoretical basis (a) increases the applicability of methodology to arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncertainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and (c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD and conventional state/parameter estimation schemes is shown and illustrated for the least-squares estimator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly measuring local power density in nuclear reactor cores.