ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Peter G. Laky, Nicholas Tsoulfanidis
Nuclear Science and Engineering | Volume 121 | Number 3 | December 1995 | Pages 433-447
Technical Paper | doi.org/10.13182/NSE95-A24145
Articles are hosted by Taylor and Francis Online.
Pressure vessel fluence and reaction rates for dosimetry foils in the cavity surrounding the pressure vessel of a pressurized water reactor were determined with a Monte Carlo calculation using the MCNP code. Source neutrons were sampled from a position probability distribution derived from the utility-provided normalized assembly segment power output. The MCNP model was based on one-eighth core symmetry. Source segment spatial biasing, energy cutoff, spatial importance functions, and weight windows were employed as variance reduction techniques. Computed reaction rates were compared with measured ones and in one case to discrete ordinates transport code calculations. Computed reaction rates matched the measured ones within ±10% for 21 of 33 cases and within ±15% for 26 of 33 cases. Neutron flux and fluence >0.1111 and 1 MeV at the pressure vessel location were computed to <10% statistical uncertainty. The estimated maximum fluence per cycle was found to be of the order of 1017 n/cm2.