ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
W. S. Yang
Nuclear Science and Engineering | Volume 121 | Number 3 | December 1995 | Pages 416-432
Technical Paper | doi.org/10.13182/NSE95-A24144
Articles are hosted by Taylor and Francis Online.
An analytic study was performed of the properties and the associated convergence implications of the response matrix equations derived via the widely used nodal expansion method. By using the DIF3D nodal formulation in hexagonal-z geometry as a concrete example, an analytic expression for the response matrix is first derived by using the hexagonal prism symmetry transformations. The spectral radius of the local response matrix is shown to be always <1. The l2-norm of the response matrix is shown to be <1 in two-dimensional problems but not always <1 in three-dimensional problems. The elements of the response matrix are shown to not always be positive, and the l∞-norm is not always <1. The spectral radius and the l2- and l∞-norms of the response matrix are found to increase as the removal cross section decreases. On the other hand, for a given removal cross section, each of these matrix norms takes its minimum at a certain diffusion coefficient and increases as the diffusion coefficient deviates from this value. Based on these matrix norms, sufficient conditions for the convergence of the iteration schemes for solving the response matrix equations are discussed. The range of node-height-to-hexagon-pitch ratios that guarantees a positive solution is derived as a function of the diffusion coefficient and the removal cross section.