ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Stanley S. Glickstein, William H. Vance, Hansem Joo
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE95-A24137
Articles are hosted by Taylor and Francis Online.
Real-time neutron radiography is being evaluated for studying the dynamic behavior of two-phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. An air-water flow system was constructed to simulate vapor conditions encountered in a fluid flow duct Air was injected into the bottom of the duct at flow rates up to 0.47 /s (1 ft3/min). The water flow rate was varied between 0 and 3.78 /min (0 to 1 gal/min). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 106 n/cm2.s-1 directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5-cm (2-in.)-thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data, which were recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air-water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented.