ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Greg Wojtowicz, James Paul Holloway
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 89-102
Technical Paper | doi.org/10.13182/NSE95-A24131
Articles are hosted by Taylor and Francis Online.
A variational coarse-mesh technique is developed for the solution of the multigroup neutron transport equation in one-dimensional reactor lattices. In contrast to conventional nodal lattice applications that discretize diffusion theory and use node homogenized cross sections, the methods used here retain the spatial dependence of the cross sections and instead employ an alternative flux representation, a slowly modulated pin cell flux, that allows the neutron transport equation to be cast into a form whose solution has a relatively slow spatial and angular variation and that can be accurately described with relatively few variables. This alternative flux representation and the stationary property of a variational principle define a class of coarse-mesh discretizations of transport theory that are capable of achieving order-of-magnitude reductions of eigenvalue and pointwise scalar flux errors compared with diffusion theory while retaining the relatively low cost of diffusion theory.