ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. Akherraz, C. Fedon-Magnaud, J. J. Lautard, R. Sanchez
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 187-198
Technical Paper | doi.org/10.13182/NSE95-A24118
Articles are hosted by Taylor and Francis Online.
Three approaches are presented to treat anisotropic scattering in neutron transport. The approaches are based on the even-odd-parity flux formalism and yield three different second-order equations for the even-parity flux. The first one is based on the total elimination of the odd-parity flux of the second-order equation. In the other two approaches, anisotropic scattering contributions are homogenized and incorporated into the collision term. The numerical solutions of these equations are implemented in the CRONOS code for pressurized water reactor core calculations and are done with a finite element spatial approximation and the discrete ordinates methods (SN) for the angular variable. Numerical results are presented for critical problems (keff) in x-y geometry. Comparisons with the APOLL02 assembly code show the accuracy and the efficiency of the proposed algorithms.