ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Bryan Minor, Kirk Mathews
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 165-186
Technical Paper | doi.org/10.13182/NSE95-A24117
Articles are hosted by Taylor and Francis Online.
The exponential characteristic (EC) spatial quadrature for discrete ordinates neutral particle transport previously introduced in slab geometry is extended here to x-y geometry with rectangular cells. The method is derived and compared with current methods. It is similar to the linear characteristic (LC) quadrature (a linear-linear moments method) but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx + cy), whose parameters are rootsolved to match the known (from the previous iteration) spatial average and first moments of the source over the cell. Similarly, EC assumes exponential distributions of flux along cell edges through which particles enter the cell, with parameters chosen to match the average and first moments of flux, as passed from the adjacent, upstream cells (or as determined by boundary conditions). Like the linear adaptive (LA) method, EC is positive and nonlinear. It is more accurate than LA and does not require subdivision of cells. The nonlinearity has not interfered with convergence. The exponential moment functions, which were introduced with the slab geometry method, are extended to arbitrary dimensions (numbers of arguments) and used to avoid numerical ill conditioning. As in slab geometry, the method approaches O(Δx4) global truncation error on fine-enough meshes, while the error is insensitive to mesh size for coarse meshes. Performance of the method is compared with that of the step characteristic, LC, linear nodal, step adaptive, and LA schemes. The EC method is a strong performer with scattering ratios ranging from 0 to 0.9 (the range tested), particularly so for lower scattering ratios. As in slab geometry, EC is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems.