ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
W. S. Yang, Y. Kim, R. N. Hill, T. A. Taiwo, H. S. Khalil
Nuclear Science and Engineering | Volume 146 | Number 3 | March 2004 | Pages 291-318
Technical Paper | doi.org/10.13182/NSE04-A2411
Articles are hosted by Taylor and Francis Online.
A systematic study on long-lived fission products (LLFPs) transmutation has been performed with the aim of devising an optimal strategy for their transmutation in critical or subcritical reactor systems and evaluating impacts on the geologic repository. First, 99Tc and 129I were confirmed to have highest transmutation priorities in terms of transmutability and long-term radiological risk reduction. Then, the transmutation potentials of thermal and fast systems for 99Tc and 129I were evaluated by considering a typical pressurized water reactor (PWR) core and a sodium-cooled accelerator transmutation of waste system. To determine the best transmutation capabilities, various target design and loading optimization studies were performed. It was found that both 99Tc and 129I can be stabilized (i.e., zero net production) in the same PWR core under current design constraints by mixing 99Tc with fuel and by loading CaI2 target pins mixed with ZrH2 in guide tubes, but the PWR option appears to have a limited applicability as a burner of legacy LLFP. In fast systems, loading of moderated LLFP target assemblies in the core periphery (reflector region) was found to be preferable from the viewpoint of neutron economy and safety. By a simultaneous loading of 99Tc and 129I target assemblies in the reflector region, the self-generated 99Tc and 129I as well as the amount produced by several PWR cores could be consumed at a cost of ~10% increased fuel inventory. Discharge burnups of ~29 and ~37% are achieved for 99Tc and 129I target assemblies with an ~5-yr irradiation period.Based on these results, the impacts of 99Tc and 129I transmutation on the Yucca mountain repository were assessed in terms of the dose rate. The current Yucca Mountain release evaluations do not indicate a compelling need to transmute 99Tc and 129I because the resulting dose rates fall well below current regulatory limits. However, elimination of the LLFP inventory could allow significant relaxation of the waste form and container performance criteria, with associated economic benefits. Therefore, some development of either specialized waste form or transmutation target for the LLFP is prudent, especially considering the potential accumulation of large LLFP inventory with sustained use of nuclear energy into the future.