ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Kazuo Shin, Kagetomo Miyahara, Eiji Tanabe, Yoshitomo Uwamino
Nuclear Science and Engineering | Volume 120 | Number 1 | May 1995 | Pages 40-54
Technical Paper | doi.org/10.13182/NSE95-A24104
Articles are hosted by Taylor and Francis Online.
Measurements of the double-differential thick-target neutron yield are made for 75- and 120-MeV 12C5+, 153-MeV 16O5+, and 40-MeV alpha particles bombarding carbon, aluminum, copper, and lead targets. The measured data are parameterized by using the two-component moving source model. The systematic variation of the equilibrium neutron (EN) yield with incident ions and targets is analyzed by using the thus-obtained moving source parameters, and a simple expression is proposed to describe the systematics in the EN yield. The systematic change in the nonequilibrium neutron (NEN) yield was formulated to a simple expression by using the local hot spot model. The proposed expression reproduced well the measured EN and NEN yields.