ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Kazuo Shin, Kagetomo Miyahara, Eiji Tanabe, Yoshitomo Uwamino
Nuclear Science and Engineering | Volume 120 | Number 1 | May 1995 | Pages 40-54
Technical Paper | doi.org/10.13182/NSE95-A24104
Articles are hosted by Taylor and Francis Online.
Measurements of the double-differential thick-target neutron yield are made for 75- and 120-MeV 12C5+, 153-MeV 16O5+, and 40-MeV alpha particles bombarding carbon, aluminum, copper, and lead targets. The measured data are parameterized by using the two-component moving source model. The systematic variation of the equilibrium neutron (EN) yield with incident ions and targets is analyzed by using the thus-obtained moving source parameters, and a simple expression is proposed to describe the systematics in the EN yield. The systematic change in the nonequilibrium neutron (NEN) yield was formulated to a simple expression by using the local hot spot model. The proposed expression reproduced well the measured EN and NEN yields.