ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Tay-Jian Liu, Chien-Hsiung Lee
Nuclear Science and Engineering | Volume 146 | Number 3 | March 2004 | Pages 274-290
Technical Paper | doi.org/10.13182/NSE04-A2410
Articles are hosted by Taylor and Francis Online.
A complete scheme of scaling methods to design the reduced-height, reduced-pressure (RHRP) Institute of Nuclear Energy Research Integral System Test (IIST) facility and to specify test conditions for incident simulation was developed. In order to preserve core decay power history and coolant mass inventory during a transient, a unique power-to-mass scaling method is proposed and utilized for RHRP and full-height, full-pressure (FHFP) systems. To validate the current scaling method, three counterpart tests done at the IIST facility are compared with the FHFP tests in small-break loss-of-coolant, station blackout, and loss-of-feedwater accidents performed at the Large-Scale Test Facility (LSTF) and the BETHSY test facility. Although differences appeared in design, scaling, and operation conditions among the IIST, LSTF, and BETHSY test facilities, the important physical phenomena shown in the facilities are almost the same. The physics involved in incident transient phenomena are well measured and modeled by showing the common thermal-hydraulic behavior of key parameters and the general consistency of chronological events. The results also confirm the adequacy of power-to-mass scaling methodology.