ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
C.A. Beard, V. I. Belyakov-Bodin
Nuclear Science and Engineering | Volume 119 | Number 2 | February 1995 | Pages 87-96
Technical Paper | doi.org/10.13182/NSE95-A24073
Articles are hosted by Taylor and Francis Online.
A comparison was performed between the energy deposition predicted by the LAHET code system (LCS) and experimental values for 800-, 1000-, and 1200-MeV Protons on targets composed of beryllium, carbon, aluminum, iron, copper, lead, bismuth, and uranium. The lead, bismuth, and uranium targets showed agreement within ∼10% at locations throughout the targets, and the agreement of the total energy deposited over the axial length of the targets ranged from 1 to 18%. For the lighter materials, the agreement at locations throughout the target was within ∼25%. No definable trend could be determined for the lighter materials because some LCS predictions were greater and some were less than the experimental results, and some showed very good agreement. Also, the LCS underpredicted the proton ranges for 800-MeV protons on iron, 800- and 1000-MeV protons on copper, and 800- and 1000-MeV protons on uranium.