ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C.A. Beard, V. I. Belyakov-Bodin
Nuclear Science and Engineering | Volume 119 | Number 2 | February 1995 | Pages 87-96
Technical Paper | doi.org/10.13182/NSE95-A24073
Articles are hosted by Taylor and Francis Online.
A comparison was performed between the energy deposition predicted by the LAHET code system (LCS) and experimental values for 800-, 1000-, and 1200-MeV Protons on targets composed of beryllium, carbon, aluminum, iron, copper, lead, bismuth, and uranium. The lead, bismuth, and uranium targets showed agreement within ∼10% at locations throughout the targets, and the agreement of the total energy deposited over the axial length of the targets ranged from 1 to 18%. For the lighter materials, the agreement at locations throughout the target was within ∼25%. No definable trend could be determined for the lighter materials because some LCS predictions were greater and some were less than the experimental results, and some showed very good agreement. Also, the LCS underpredicted the proton ranges for 800-MeV protons on iron, 800- and 1000-MeV protons on copper, and 800- and 1000-MeV protons on uranium.