ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
K. D. Lathrop
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 80-86
Technical Notes | doi.org/10.13182/NSE95-A24071
Articles are hosted by Taylor and Francis Online.
The cosine of the laboratory scattering angle is derived for a neutron elastically scattering from a nucleus moving with a specified velocity. Scattering is assumed to be isotropic in the center-of-mass system, and the mean cosine of the laboratory scattering angle is calculated and shown to agree with the first Legendre moment of a scattering probability function derived by Blackshaw and Murray. Isotropic neutron-nucleus encounters are further assumed, and a second average is taken to calculate a mean cosine as a function of the neutron-nuclear speed ratio. This mean cosine approaches 2/(3m), where m is the nucleus mass relative to the neutron mass, as the neutron speed becomes large compared with the speed of the nucleus, but for m > 1, the scattering becomes more anisotropic as this speed ratio decreases before approaching isotropy at small neutron-nucleus speed ratios. This single nuclear speed mean cosine is compared with its average over a Maxwellian distribution of nuclear speeds. The two are qualitatively very similar. Taking the single nuclear speed to be the average speed of the Maxwellian distribution gives better quantitative agreement, in a least-squares sense, between the single-speed mean cosine and the Maxwellian average mean cosine than does using the most probable speed of the Maxwellian distribution.