ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
K. D. Lathrop
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 80-86
Technical Notes | doi.org/10.13182/NSE95-A24071
Articles are hosted by Taylor and Francis Online.
The cosine of the laboratory scattering angle is derived for a neutron elastically scattering from a nucleus moving with a specified velocity. Scattering is assumed to be isotropic in the center-of-mass system, and the mean cosine of the laboratory scattering angle is calculated and shown to agree with the first Legendre moment of a scattering probability function derived by Blackshaw and Murray. Isotropic neutron-nucleus encounters are further assumed, and a second average is taken to calculate a mean cosine as a function of the neutron-nuclear speed ratio. This mean cosine approaches 2/(3m), where m is the nucleus mass relative to the neutron mass, as the neutron speed becomes large compared with the speed of the nucleus, but for m > 1, the scattering becomes more anisotropic as this speed ratio decreases before approaching isotropy at small neutron-nucleus speed ratios. This single nuclear speed mean cosine is compared with its average over a Maxwellian distribution of nuclear speeds. The two are qualitatively very similar. Taking the single nuclear speed to be the average speed of the Maxwellian distribution gives better quantitative agreement, in a least-squares sense, between the single-speed mean cosine and the Maxwellian average mean cosine than does using the most probable speed of the Maxwellian distribution.