ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Kyungdoo Kim, J. Michael Doster
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 18-33
Technical Paper | doi.org/10.13182/NSE95-A24068
Articles are hosted by Taylor and Francis Online.
Mixture models are commonly used in the simulation of transient two-phase flows as simplifications of six-equation models, with the drift-flux models as a common way to describe relative phase motion. This is particularly true in simulator and control system modeling where solutions that are faster than real time are necessary, and as a means for incorporating thermal-hydraulic feedback into steady-state and transient neutronics calculations. Variations on semi-implicit finite difference schemes are some of the more commonly used temporal discretization schemes. The maximum time-step size associated with these schemes is normally assumed to be limited by stability considerations to the material transport time across any computational cell (Courant limit). In applications requiring solutions that are faster than real time or the calculation of thermal-hydraulic feedback in reactor kinetics codes, time-step sizes that are restricted by the material Courant limit may result in prohibitive run times. A Courant violating scheme is examined for the mixture drift-flux equations, which for rapid transients is at least as fast as classic semi-implicit methods and for slow transients allows time-step sizes many times greater than the material Courant limit.