ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Kyungdoo Kim, J. Michael Doster
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 18-33
Technical Paper | doi.org/10.13182/NSE95-A24068
Articles are hosted by Taylor and Francis Online.
Mixture models are commonly used in the simulation of transient two-phase flows as simplifications of six-equation models, with the drift-flux models as a common way to describe relative phase motion. This is particularly true in simulator and control system modeling where solutions that are faster than real time are necessary, and as a means for incorporating thermal-hydraulic feedback into steady-state and transient neutronics calculations. Variations on semi-implicit finite difference schemes are some of the more commonly used temporal discretization schemes. The maximum time-step size associated with these schemes is normally assumed to be limited by stability considerations to the material transport time across any computational cell (Courant limit). In applications requiring solutions that are faster than real time or the calculation of thermal-hydraulic feedback in reactor kinetics codes, time-step sizes that are restricted by the material Courant limit may result in prohibitive run times. A Courant violating scheme is examined for the mixture drift-flux equations, which for rapid transients is at least as fast as classic semi-implicit methods and for slow transients allows time-step sizes many times greater than the material Courant limit.