ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
S. M. Ghiaasiaan, B. K. Kamboj, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 119 | Number 1 | January 1995 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE95-A24067
Articles are hosted by Taylor and Francis Online.
Steady-state condensation in the presence of a noncondensable in a cocurrent two-phase channel flow is analyzed using a two-fluid model. The effect of noncondensables on the combined heat and mass transfer at the liquid-gas mixture interphase is accounted for by using the stagnant film model, and closure relations relevant to the annular-dispersed two-phase flow regime are applied. The conservation equations are cast into a system of coupled ordinary differential equations, which are numerically integrated. Model predictions are compared with published experimental data, with satisfactory results. It is shown that the two-fluid model can correctly predict all major data trends and is preferable to empirical methods.