ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T. J. Downar
Nuclear Science and Engineering | Volume 115 | Number 4 | December 1993 | Pages 334-340
Technical Note | doi.org/10.13182/NSE93-A24063
Articles are hosted by Taylor and Francis Online.
Depletion perturbation theory was developed within the framework of an advanced hexagonal nodal diffusion method. A similarity transformation method was used to compute the mathematical generalized adjointsfrom the corresponding physical system because it was more convenient to utilize the numerical algorithms and codes developed for solving the real system equations. The methods were implemented using the DIF3D code for the flux solutions and were applied to a sample problem using a hexagonal geometry lattice. In all cases, there was good agreement between the results of direct subtraction and the depletion sensitivities. This work indicates it is feasible to generate depletion sensitivities within the framework of advanced nodal diffusion methods.