ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Naeem M. Abdurrahman, Robert C. Block, Donald R. Harris, Rudolf E. Slovacek, Yong-Doek Lee, Francisco Rodriguez-Vera
Nuclear Science and Engineering | Volume 115 | Number 4 | December 1993 | Pages 279-296
Technical Paper | doi.org/10.13182/NSE92-94
Articles are hosted by Taylor and Francis Online.
The slowing-down-time method for the nondestructive assay of light water reactor (LWR) spent fuel is under development at Rensselaer Polytechnic Institute. A series of assay measurements of an LWR fuel assembly replica were carried out at the Rensselaer lead slowing-down-time spectrometer facility by using 238U and 232Th threshold fission detectors and 235U and 239Pu probe chambers. An assay model relating the assay signal and the signals of the probe chambers to the unknown masses of the fissile isotopes in the fuel assembly was developed. The probe chamber data were used to provide individual fission counting spectra of 235U and 239Pu inside the fuel assembly and to simulate spent-fuel assay signals. The fissile isotopic contents of the fuel were determined to better than 1%. Monte Carlo analyses were performed to simulate the experimental measurements, determine certain parameters of the assay system, and investigate the effect of the fuel assembly and hydrogen impurities on the performance of the system. The broadened resolution of the system caused by the presence of the fuel was still found to be sufficient for the accurate and separate assay of the uranium and plutonium fissiles in spent fuel.