ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. A. Nikulin, M. A. Shtremel, V. G. Khanzhin, B. M. Fateev, V. A. Markelov
Nuclear Science and Engineering | Volume 115 | Number 3 | November 1993 | Pages 193-204
Technical Paper | doi.org/10.13182/NSE93-A24049
Articles are hosted by Taylor and Francis Online.
The influence of hydrides on the mechanism and kinetics of ductile fracture in the Zr-2.5 Nb alloy has been analyzed as a function of static tension of specimens containing 200ppm hydrogen. The smooth cylindrical specimens used were of two orientations with the maximum hydride platelet dimensions from 5 to 200 μm preferentially oriented parallel to the tensile axis. Nucleation of cracks in hydrides and internal cracks in a specimen at different deformation stages have been studied by recording the peak amplitudes of acoustic emission with a nonresonant damped sensor. The joint analysis of the stress-strain diagrams and acoustic emission results of metallographic and fractographic examinations has revealed the role of hydrides in the loss of stability by flow, neck formation and ductile fracturing under tension. Depending on the length of hydrides, two types of the ductile fracture kinetics are realized. Fine hydrides whose average size is 10 to 20 μm do not influence the stability of the plastic flow under tension, but they merely accelerate the generation of voids at the stage of ductile fracture formation. In contrast, crack nucleation in large hydrides whose average size is >60 to 100 jim is the cause of premature localization of deformation in the neck and axial decohesion in the fracture, which reduces the overall ductility of the alloy. The record of acoustic emission provided by a damped sensor shows that the signal peak amplitude and the axial crack area are proportional; this allows one to use an amplitude analysis of signals for the quantitative estimation of the dimensions of hydride-induced cracks.