ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Gregory D. Spriggs
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 342-351
Technical Paper | doi.org/10.13182/NSE92-78
Articles are hosted by Taylor and Francis Online.
An-in-pile experimental technique to measure the decay constants and the relative abundances of the delayed neutron groups applicable for a given reactor system is presented. The method is based on a least-squares-fitting technique that simultaneously fits a series of transients produced by small reactivity perturbations to a reactor operating initially at delayed critical. The function that is least-squares fit is the analytic solution (written in terms of an arbitrary number of delayed neutron groups) as obtained by the point reactor model for the reactor response following a step change in reactivity. The application of the method does not require any knowledge of the size of the reactivity perturbations, and the method is independent of the detector efficiency. The results are based solely on the measurable quantities of relative power, time, and one measurable root of the Inhour equation.