ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Robert P. Rulko, Edward W. Larsen
Nuclear Science and Engineering | Volume 114 | Number 4 | August 1993 | Pages 271-285
Technical Paper | doi.org/10.13182/NSE93-A24040
Articles are hosted by Taylor and Francis Online.
Even-order PN theory has historically been viewed as a questionable approximation to transport theory. The main reason is that one obtains an odd number of unknowns and equations; this causes an ambiguity in the prescription of boundary conditions. We derive the one-group planar-geometry P2 equations and associated boundary conditions using a simple, physically motivated variational principle. We also present numerical results comparing P2, P1, and SN calculations. These results demonstrate that for most problems, the P2 equations with variational boundary conditions are considerably more accurate than the P1 equations with either the Marshak or the Federighi-Pomraning boundary conditions (both of which have also been derived variationally). Moreover, because the P2 and P1 equations can be written in diffusion form, the discretized P2 equations require nearly the same computational effort to solve as the discretized P1 equations. Our variational method can easily be extended to higher even-order PN approximations.