ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Mark J. Harper
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 118-123
Technical Paper | doi.org/10.13182/NSE93-A24023
Articles are hosted by Taylor and Francis Online.
A theoretical model was developed to predict the amount of nucleation that occurs as a result of neutron interactions in superheated liquids. The model utilizes nuclear cross-section data, charged-particle linear energy transfer information, and computations of critical bubble nucleation energy to generate the number of bubbles formed in superheated liquid droplet (“bubble”) neutron detectors exposed to neutron fluxes of specified intensity and energy. Previous experimental attempts to relate effective (energy-depositing) ion track length L to critical bubble radius rc using a dimension-less coefficient were unsuccessful. The formulation of a new coefficient b, equal to the ratio of effective ion track length L to the seed bubble radius ro is now proposed. By parameterizing the value of b within the model, the least-squares best value of b was determined to be 4.3 for both high- and low-energy 252Cf neutrons. Thus, the effective recoil ion track length in radiation-induced nucleation can be determined if the seed bubble radius is known.