ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
P. R. McClure, M. T. Leonard, A. Razani
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 102-111
Technical Paper | doi.org/10.13182/NSE93-A24021
Articles are hosted by Taylor and Francis Online.
A computational model is described for fission product release from molten pools of uranium-aluminum (U-Al) metal. Liquid-metal pools may form during severe accidents in U-Al-fueled reactors if multiple core assemblies melt and relocate to the bottom of the reactor vessel. At present, data for the release of fission products from intact U-Al fuel are sparse, and no data are available for the release of fission products from U-Al in the form of molten pools. This investigation postulates three phenomena that govern fission product release from such a system: (a) Rayleigh cell convection in the molten pool; (b) nucleation of volatile radionuclide species with concomitant bubble dynamics; and (c) diffusion from the pool surface. Selected sensitivity analyses have been performed to study the dependence of model predictions on uncertain input parameters and thus to characterize critical needs for experimental data. The results of the sensitivity analysis indicate that parameters that characterize the nucleation rate of volatile species in the pool have the greatest effect on the calculated rate of fission product release.