ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
P. R. McClure, M. T. Leonard, A. Razani
Nuclear Science and Engineering | Volume 114 | Number 2 | June 1993 | Pages 102-111
Technical Paper | doi.org/10.13182/NSE93-A24021
Articles are hosted by Taylor and Francis Online.
A computational model is described for fission product release from molten pools of uranium-aluminum (U-Al) metal. Liquid-metal pools may form during severe accidents in U-Al-fueled reactors if multiple core assemblies melt and relocate to the bottom of the reactor vessel. At present, data for the release of fission products from intact U-Al fuel are sparse, and no data are available for the release of fission products from U-Al in the form of molten pools. This investigation postulates three phenomena that govern fission product release from such a system: (a) Rayleigh cell convection in the molten pool; (b) nucleation of volatile radionuclide species with concomitant bubble dynamics; and (c) diffusion from the pool surface. Selected sensitivity analyses have been performed to study the dependence of model predictions on uncertain input parameters and thus to characterize critical needs for experimental data. The results of the sensitivity analysis indicate that parameters that characterize the nucleation rate of volatile species in the pool have the greatest effect on the calculated rate of fission product release.