ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Jingshang Zhang
Nuclear Science and Engineering | Volume 114 | Number 1 | May 1993 | Pages 55-63
Technical Paper | doi.org/10.13182/NSE93-3
Articles are hosted by Taylor and Francis Online.
The master equation theory of precompound and compound nuclear reactions has been generalized to include the conservation of angular momentum and parity. Based on this improved semi-classical theory, the UNF code has been developed as a tool for calculating nucleon-induced reaction cross sections and double-differential cross sections at incident neutron energies below 20 MeV. It is demonstrated that the code contains the Hauser-Feshbach model and the exciton models as the limiting cases. The unified treatment of equilibrium and pre-equilibrium reaction processes includes the introduction of composite particle formation factors in calculations of pickup-type composite particle emissions. A method to calculate the double-differential cross sections for all kinds of particles is proposed based on the leading particle model.