ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Wayne C. Jouse, John G. Williams
Nuclear Science and Engineering | Volume 114 | Number 1 | May 1993 | Pages 42-54
Technical Paper | doi.org/10.13182/NSE93-A24013
Articles are hosted by Taylor and Francis Online.
In the design and operation of nuclear reactors, safety-related goals must be embedded in complex multivariate control strategies. It is often the case that the goals exist only as mental models in the mind of the designer or the operator. In order to effect control that is risk averse, the goals must be translated into an effective control strategy that can be both verified and validated. The relation that these safety goals have to a particular architecture of artificial neural network, the Barto-Sutton architecture, is examined and the capability of the network to embed safety goals in nontrivial control tasks is demonstrated. To realize these goals, the network was extended to encompass a multiple-input/multiple-output control structure.The network synthesizes a control schedule through the construction of artificial precursors to failure; these serve as an additional, virtual layer in the defenses against fission product release. The synthesized schedule can be visually inspected for anomalies and inconsistencies and is validated during training.