ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Wayne C. Jouse, John G. Williams
Nuclear Science and Engineering | Volume 114 | Number 1 | May 1993 | Pages 42-54
Technical Paper | doi.org/10.13182/NSE93-A24013
Articles are hosted by Taylor and Francis Online.
In the design and operation of nuclear reactors, safety-related goals must be embedded in complex multivariate control strategies. It is often the case that the goals exist only as mental models in the mind of the designer or the operator. In order to effect control that is risk averse, the goals must be translated into an effective control strategy that can be both verified and validated. The relation that these safety goals have to a particular architecture of artificial neural network, the Barto-Sutton architecture, is examined and the capability of the network to embed safety goals in nontrivial control tasks is demonstrated. To realize these goals, the network was extended to encompass a multiple-input/multiple-output control structure.The network synthesizes a control schedule through the construction of artificial precursors to failure; these serve as an additional, virtual layer in the defenses against fission product release. The synthesized schedule can be visually inspected for anomalies and inconsistencies and is validated during training.