ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Peter D. Esser, Robert J. Witt
Nuclear Science and Engineering | Volume 114 | Number 1 | May 1993 | Pages 20-35
Technical Paper | doi.org/10.13182/NSE93-A24011
Articles are hosted by Taylor and Francis Online.
An upwind nodal solution method is developed for the steady, two-dimensional flow of an incompressible fluid. The formulation is based on the nodal integral method, which uses transverse integrations, analytical solutions of the one-dimensional averaged equations, and node-averaged uniqueness constraints to derive the discretized nodal equations. The derivation introduces an exponential upwind bias by retaining the streamwise convection term in the homogeneous part of the transverse-integrated convection-diffusion equation. The method is adapted to the stream function-vorticity form of the Navier-Stokes equations, which are solved over a nonstaggered nodal mesh. A special nodal scheme is used for the Poisson stream function equation to properly account for the exponentially varying vorticity source. Rigorous expressions for the velocity components and the no-slip vorticity boundary condition are derived from the stream function formulation.The method is validated with several benchmark problems. An idealized purely convective flow of a scalar step function indicates that the nodal approximation errors are primarily dispersive, not dissipative, in nature. Results for idealized and actual recirculating driven-cavity flows reveal a significant reduction in false diffusion compared with conventional finite difference techniques.