ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Chang-Ho Lee, Thomas J. Downar
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 176-187
Technical Paper | doi.org/10.13182/NSE04-A2401
Articles are hosted by Taylor and Francis Online.
A hybrid nodal diffusion/simplified P3 (SP3) method was implemented within the framework of a one-node coarse-mesh finite difference formulation. The one-node formulation enables the use of various combinations of space, energy, and angular approximations within the framework of the one-node global/local solution approach. Spatial approximations include advanced nodal methods and fine-mesh finite difference methods. Energy approximations involve conventional two-group and multiple energy groups. Angular approximations contain both the diffusion and SP3 methods. Partial-moment boundary conditions are used to solve the one-node problems since they simplify the formulation of consistent interface conditions for the various methods. All directional moments are determined simultaneously to stabilize convergence of the one-node global/local solution approach. Results for a light water reactor mixed-oxide benchmark problem indicate that the hybrid application of the one-node-based nodal SP3 method developed here can provide substantial reductions in the computational time without compromising the accuracy of the solution.