ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Tehsin Hamid, K. O. Ott
Nuclear Science and Engineering | Volume 113 | Number 2 | February 1993 | Pages 109-121
Technical Paper | doi.org/10.13182/NSE93-A24001
Articles are hosted by Taylor and Francis Online.
A study is conducted to investigate conceptual liquid-metal reactor (LMR) core concepts, employing some unconventional design features for improved economics and safety. The unconventional design elements are used to supplement the conventional measures, which alone have apparently not led to an attractive LMR design for the 21st century. Better economics are obtained through simplicity and compactness of the core design. For simplicity, internal scattered blankets are omitted. Core compactness is achieved by maximum power flattening, resulting from axial and radial enrichment zones along with axial and radial (BeO) reflectors. To further enhance core compactness, the in-core control rods are replaced by reflector controls. For improved safety, the general objective is to reduce both coolant-void and burnup reactivities. However, even with the use of a wide spectrum of unconventional design features, such as burnable poisons, peripheral reflectors, and inner moderating regions, it is not possible to overcome the fact that both coolant-void and burnup reactivities cannot be reduced simultaneously to desirably low levels. The only resolution of this dilemma appears to be to minimize coolant-void reactivity and to “manage” the burnup reactivity losses, such that an accidental insertion of significant amounts of reactivity is mechanically not possible. A conceptual design with these characteristics is described.