ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Han Gon Kim, Soon Heung Chang, Byung Ho Lee
Nuclear Science and Engineering | Volume 113 | Number 1 | January 1993 | Pages 70-76
Technical Paper | doi.org/10.13182/NSE93-A23994
Articles are hosted by Taylor and Francis Online.
In pressurized water reactors, the fuel reloading problem has significant meaning in terms of both safety and economics. The local power peaking factor must be kept lower than a predetermined value during a cycle, and the effective multiplication factor must be maximized to extract the maximum energy. If these core parameters could be obtained in a very short time, the optimal fuel reloading patterns would be found more effectively and quickly. A very fast core parameter prediction system is developed using the backpropagation neural network. This system predicts the core parameters several hundred times as fast as the reference numerical code, within an error of a few percent. The effects of the variation of the training rate coefficients, the momentum, and the hidden layer units are also discussed.