ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Han Gon Kim, Soon Heung Chang, Byung Ho Lee
Nuclear Science and Engineering | Volume 113 | Number 1 | January 1993 | Pages 70-76
Technical Paper | doi.org/10.13182/NSE93-A23994
Articles are hosted by Taylor and Francis Online.
In pressurized water reactors, the fuel reloading problem has significant meaning in terms of both safety and economics. The local power peaking factor must be kept lower than a predetermined value during a cycle, and the effective multiplication factor must be maximized to extract the maximum energy. If these core parameters could be obtained in a very short time, the optimal fuel reloading patterns would be found more effectively and quickly. A very fast core parameter prediction system is developed using the backpropagation neural network. This system predicts the core parameters several hundred times as fast as the reference numerical code, within an error of a few percent. The effects of the variation of the training rate coefficients, the momentum, and the hidden layer units are also discussed.