ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. Ronchi, J. P. Hiernaut, R. Selfslag, G. J. Hyland
Nuclear Science and Engineering | Volume 113 | Number 1 | January 1993 | Pages 1-19
Technical Paper | doi.org/10.13182/NSE93-A23990
Articles are hosted by Taylor and Francis Online.
The heat capacity Cp of UO2 was measured in a laboratory experiment where sintered 0.5-to 1-mm-diam microspheres were heated by four tetrahedrally oriented laser beams in an inert-gas-filled autoclave at pressures up to ∼1000 bar. The sample, suspended by a tungsten needle, was heated to 8000 K during pulses of a few milliseconds duration. The experimental technique, the instrumentation, and the analytical method used to deduce Cp from the experimental pulse-heating curves are described. Between the melting point Tm and ∼4000 K, the heat capacity decreases to a value close to that given by the Neumann-Kopp rule for a triatomic, harmonic lattice, i.e., 9R. Near 5000 K, however, the heat capacity again increases, and it appears to saturate at a value ∼30% higher by 8000 K. The new results are compared with published Cp values for molten UO2 (and other relevant materials) and are briefly discussed in light of the established temperature dependence of Cp at T < Tm and the high-energy electronic structure of UO2.