ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
M. A. Smith, G. Palmiotti, E. E. Lewis, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 141-151
Technical Paper | doi.org/10.13182/NSE146-141
Articles are hosted by Taylor and Francis Online.
An integral form of the variational nodal method is formulated, implemented, and tested. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Spatial discretization within each node allows for accurate treatment of homogeneous or heterogeneous node geometries. The integral method is implemented in Cartesian x-y geometry and applied to three benchmark problems. The method's accuracy is compared to that of the standard spherical harmonic formulation of the variational nodal method, and the CPU and memory requirements of the two approaches are compared and contrasted. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the spherical harmonics approach.