ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
M. A. Smith, G. Palmiotti, E. E. Lewis, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 141-151
Technical Paper | doi.org/10.13182/NSE146-141
Articles are hosted by Taylor and Francis Online.
An integral form of the variational nodal method is formulated, implemented, and tested. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Spatial discretization within each node allows for accurate treatment of homogeneous or heterogeneous node geometries. The integral method is implemented in Cartesian x-y geometry and applied to three benchmark problems. The method's accuracy is compared to that of the standard spherical harmonic formulation of the variational nodal method, and the CPU and memory requirements of the two approaches are compared and contrasted. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the spherical harmonics approach.