ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M. A. Smith, G. Palmiotti, E. E. Lewis, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 146 | Number 2 | February 2004 | Pages 141-151
Technical Paper | doi.org/10.13182/NSE146-141
Articles are hosted by Taylor and Francis Online.
An integral form of the variational nodal method is formulated, implemented, and tested. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Spatial discretization within each node allows for accurate treatment of homogeneous or heterogeneous node geometries. The integral method is implemented in Cartesian x-y geometry and applied to three benchmark problems. The method's accuracy is compared to that of the standard spherical harmonic formulation of the variational nodal method, and the CPU and memory requirements of the two approaches are compared and contrasted. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the spherical harmonics approach.