ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Imre Pázsit
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 369-374
Technical Paper | doi.org/10.13182/NSE92-A23985
Articles are hosted by Taylor and Francis Online.
A new and simple derivation of the neutron transport equation is given. The approach is similar to that used in the Liouville equation and its applications to the Boltzmann equation in that it is formulated in terms of the one-particle or one-point density function, as opposed to the traditional reactor physics approach of counting neutrons in a volume of the phase-space. It makes use of the recognition that the expected number of particles in a phase cell dV is the same as the probability of finding one particle in dV. A novelty of the derivation here is that because of the linear Markovian property of the process, it is possible to derive a master (Chapman-Kolmogorov) equation for the one-particle density, that is, for the neutron density or neutron flux of the traditional transport equation. This way, the forward and the backward (adjoint) equations of neutron transport can be derived from a single master equation. The variance of the one-point distribution function is also derived, and an explicit solution is given.