ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ahmed Badruzzaman
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 321-335
Technical Paper | doi.org/10.13182/NSE92-A23981
Articles are hosted by Taylor and Francis Online.
A theoretical analysis is presented that assesses the accuracy of the finite moments transport method in optically thick, scattering-dominated media. Two algorithms of the method, originally developed for neutronics problems, are considered. One algorithm uses a truncated balance relation, and the other uses a nodal integral relation to close the system of generalized balance equations that arise in the method. The analysis utilizes an asymptotic expansion of the flux with respect to a small parameter, ∈, which is the ratio of the mean free path of the radiation to a typical dimension of the domain. The behavior of the algorithms is analyzed both in the interior, where the correct solution is that of a diffusion equation, and near the boundary, where the flux should decay exponentially at a rate proportional to 1/∈. Relations valid for an arbitrary number of moments, and that contain earlier results for low-order neutronics methods as special cases, are derived for slab geometry. Preliminary conclusions are also drawn on the asymptotic and boundary-layer behaviors of the two finite moments algorithms in (x-y) geometry. Similar results are discussed for the finite moments algorithms to solve the time-dependent Boltzmann equation. The finite moments nodal integral scheme appears to be vastly superior to conventional deterministic schemes and higher order truncated balance schemes in optically thick problems.