ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ahmed Badruzzaman
Nuclear Science and Engineering | Volume 112 | Number 4 | December 1992 | Pages 321-335
Technical Paper | doi.org/10.13182/NSE92-A23981
Articles are hosted by Taylor and Francis Online.
A theoretical analysis is presented that assesses the accuracy of the finite moments transport method in optically thick, scattering-dominated media. Two algorithms of the method, originally developed for neutronics problems, are considered. One algorithm uses a truncated balance relation, and the other uses a nodal integral relation to close the system of generalized balance equations that arise in the method. The analysis utilizes an asymptotic expansion of the flux with respect to a small parameter, ∈, which is the ratio of the mean free path of the radiation to a typical dimension of the domain. The behavior of the algorithms is analyzed both in the interior, where the correct solution is that of a diffusion equation, and near the boundary, where the flux should decay exponentially at a rate proportional to 1/∈. Relations valid for an arbitrary number of moments, and that contain earlier results for low-order neutronics methods as special cases, are derived for slab geometry. Preliminary conclusions are also drawn on the asymptotic and boundary-layer behaviors of the two finite moments algorithms in (x-y) geometry. Similar results are discussed for the finite moments algorithms to solve the time-dependent Boltzmann equation. The finite moments nodal integral scheme appears to be vastly superior to conventional deterministic schemes and higher order truncated balance schemes in optically thick problems.